Word info

Christoffel symbol

Noun

Meaning

Christoffel symbol (plural Christoffel symbols)

(differential geometry) For a surface with parametrization






x




(
u
,
v
)


{\displaystyle {\vec {x}}(u,v)}

, and letting



i
,
j
,
k

{
u
,
v
}


{\displaystyle i,j,k\in \{u,v\}}

, the Christoffel symbol




Γ

i
j


k




{\displaystyle \Gamma _{ij}^{k}}

is the component of the second derivative







x





i
j




{\displaystyle {\vec {x}}_{ij}}

in the direction of the first derivative







x





k




{\displaystyle {\vec {x}}_{k}}

, and it encodes information about the surface's curvature. Thus,






[







x





u
u










x





u
v










x





v
v





]


=


[




Γ

u
u


u





Γ

u
u


v




l





Γ

u
v


u





Γ

u
v


v




m





Γ

v
v


u





Γ

v
v


v




n



]




[







x





u










x





v









n







]




{\displaystyle {\begin{bmatrix}{\vec {x}}_{uu}\\{\vec {x}}_{uv}\\{\vec {x}}_{vv}\end{bmatrix}}={\begin{bmatrix}\Gamma _{uu}^{u}&\Gamma _{uu}^{v}&l\\\Gamma _{uv}^{u}&\Gamma _{uv}^{v}&m\\\Gamma _{vv}^{u}&\Gamma _{vv}^{v}&n\end{bmatrix}}{\begin{bmatrix}{\vec {x}}_{u}\\{\vec {x}}_{v}\\{\vec {n}}\end{bmatrix}}}


where



{
l
,
m
,
n
}


{\displaystyle \{l,m,n\}}

is the second fundamental form and






n






{\displaystyle {\vec {n}}}

is the surface normal.

Source: en.wiktionary.org

Close letter words and terms