Noun
English Wikipedia has an article on:Essential supremum and essential infimumWikipedia
essential supremum (plural essential suprema)
(mathematical analysis) The supremum (least upper bound) of a function which holds almost everywhere. In symbols,
e
s
s
sup
f
=
inf
{
M
:
μ
(
{
x
:
f
(
x
)
>
M
}
)
=
0
}
{\displaystyle \mathrm {ess} \sup f=\inf \ \{M:\mu (\{x:f(x)>M\})=0\}}