Noun
Jackson integral (plural Jackson integrals)
(mathematics) The series expansion
∫
0
a
f
(
x
)
d
q
x
=
(
1
−
q
)
a
∑
k
=
0
∞
q
k
f
(
q
k
a
)
.
{\displaystyle \int _{0}^{a}f(x)\,{\rm {d}}_{q}x=(1-q)\,a\sum _{k=0}^{\infty }q^{k}f(q^{k}a).}
for real variable a and function of a real variable f(x).