Word info

Kleisli category

Noun

Meaning

Commutative diagram of function composition in a Kleisli category. Given a monad



(
T
,
η
,
μ
)
=
(
T
:


C





C


,

η
:



id




C




T
,

μ
:

T

2



T
)


{\displaystyle (T,\eta,\mu )=(T:{\mathcal {C}}\rightarrow {\mathcal {C}},\ \eta :{\mbox{id}}_{\mathcal {C}}\rightarrow T,\ \mu :T^{2}\rightarrow T)}

, consider a Kleisli category





K




{\displaystyle {\mathcal {K}}}

over that monad. Morphisms






f
~



:
A

B


{\displaystyle {\tilde {f}}:A\rightarrow B}

,






g
~



:
B

C


{\displaystyle {\tilde {g}}:B\rightarrow C}

, and






h
~



=



g
~







f
~



:
A

C


{\displaystyle {\tilde {h}}={\tilde {g}}\circ {\tilde {f}}:A\rightarrow C}

in





K




{\displaystyle {\mathcal {K}}}

correspond to morphisms



f
:
A

T
B


{\displaystyle f:A\rightarrow TB}

,



g
:
B

T
C


{\displaystyle g:B\rightarrow TC}

, and



h
:
A

T
C


{\displaystyle h:A\rightarrow TC}

in





C




{\displaystyle {\mathcal {C}}}

, respectively. The composition rule is






g
~







f
~



=


(

μ


cod

(
g
)



T
g

f
)







{\displaystyle {\tilde {g}}\circ {\tilde {f}}={(\mu _{{\text{cod}}(g)}\circ Tg\circ f)}^{\sim }}

. The Kleisli category shares the same objects as its underlying category. The morphisms of the Kleisli category (e.g.:






f
~





{\displaystyle {\tilde {f}}}

and






g
~





{\displaystyle {\tilde {g}}}

) are embellished versions of the morphisms of its underlying category (e.g.: f and g), and they are derived from those of the underlying category by means of applying a monad to their codomains.
Kleisli category (plural Kleisli categories)

(category theory) A category naturally associated to any monad T, and equivalent to the category of free T-algebras.

Source: en.wiktionary.org

Close letter words and terms