Word info

law of double negation

Noun

Meaning

law of double negation

(logic) The statement that the negation of the negation of A implies A, for any proposition A. Stated symbolically:



¬
¬
A

A


{\displaystyle \neg \neg A\to A}

.
The law of double negation is not valid intuitionistically. To show this with Heyting algebra semantics, let



A
=
(
0
,
1
)

(
1
,
2
)


{\displaystyle A=(0,1)\cup (1,2)}

. Then



¬
A
=
(


,
0
)

(
2
,

)


{\displaystyle \neg A=(-\infty,0)\cup (2,\infty )}

,



¬
¬
A
=
(
0
,
2
)


{\displaystyle \neg \neg A=(0,2)}

,



¬
¬
A

A
=
(


,
1
)

(
1
,

)


R



{\displaystyle \neg \neg A\to A=(-\infty,1)\cup (1,\infty )\neq \mathbb {R} }

.

Source: en.wiktionary.org

Close letter words and terms