Proper noun
the Mittag-Leffler function
(complex analysis) A complex function defined as
E
α
,
β
(
z
)
=
∑
k
=
0
∞
z
k
Γ
(
α
k
+
β
)
{\displaystyle E_{\alpha,\beta }(z)=\sum _{k=0}^{\infty }{\frac {z^{k}}{\Gamma (\alpha k+\beta )}}}
, where
Γ
(
x
)
{\displaystyle \Gamma (x)}
is the gamma function.
The Mittag-Leffler function can be used to interpolate continuously between a Gaussian and a Lorentzian function.