Proper noun
the Ramanujan theta function
(mathematics) A theta function that generalizes the form of the Jacobi theta functions while capturing their general properties. It is defined as:
f
(
a
,
b
)
=
∑
n
=
−
∞
∞
a
n
(
n
+
1
)
2
b
n
(
n
−
1
)
2
{\displaystyle f(a,b)=\sum _{n=-\infty }^{\infty }a^{\frac {n(n+1)}{2}}\;b^{\frac {n(n-1)}{2}}}
for |ab| < 1.